
1

Iowa State University

FactBoard API Manual

Digital Manufacturing and Design Innovation

Institute (DMDII)

2

Table of Contents
Introduction ... 4

Getting Started .. 5

Web APIs ... 5

Controllers of WebAPI’s ... 5

Postman .. 6

Request builder .. 6

Get ... 7

Post .. 7

Delete ... 7

Common HTTP Status Codes .. 8

HTTP Status Code Examples ... 8

Plant ... 11

Plant layout information ... 11

Get the current plant information ... 11

Add or update the plant information .. 11

Dashboard View .. 15

Dashboard View Information .. 15

Get all available dashboard views.. 15

Get all dashboard view names in system ... 15

Get a specific view by ID... 15

Add or update a view .. 16

Delete a view .. 19

EVIR... 19

EVIR information. .. 19

Get all the EVIR Information .. 19

Filter EVIR Details for a station .. 19

Filter EVIR Details by Buffer ID ... 19

Get all the Units serial numbers in a view .. 20

Filter EVIR Information by Unit Serial Number .. 20

Add/ Modify EVIR .. 20

Build List.. 20

Build List Information: ... 20

Get all build list information: ... 20

3

Get build list information for a specific unit: ... 21

Post a new item on build list: ... 21

Issue .. 21

Get all dashboard issues ... 22

Filter issue list .. 22

Using station id .. 22

Using Issue Type .. 22

Using Dates... 22

Add/ Update a dashboard issue ... 22

Inventory Reconciler .. 23

Get all assembly lines .. 23

Get all storage areas .. 23

Sequencer ... 23

Sequence ... 24

Get all the sequencer product groups .. 24

Get all the views within a specific sequencer product group ... 24

Get sequence view information for a specific view filtered by dates 24

Sequencer ... 24

Assign orders .. 24

Un-assign order: .. 25

Swap Slots: ... 25

Tutorial with Example .. 26

Example Plant layout: ... 26

Example View: ... 31

Example EVIR log: ... 33

Example Build List: .. 33

4

Introduction
FactBoard is a shop floor decision support system that converts thousands of existing real-time

transactional data inputs from logistics and production systems into a collection of visual

dashboards. These mobile decision support displays are organized around a set of personas defined

according to the information needs of manufacturing management.

A key innovation of FactBoard is its ability to utilize existing transactional data within the

enterprise and dynamically respond to increases, or even temporary decreases, in the quantity and

quality of real-time inputs. This means companies no longer have to be in a position to make major

upfront investments in shop floor data collection as FactBoard can utilize the available information

effectively to ensure an increase in the quality of decision-making as additional data sources

become available in the future.

Another key innovation of FactBoard is its ability to map engineering production life-cycle

management (PLM) data sets with ERP-generated build schedules and real-time transactional

production and logistics data to create a series of information-rich and visually effective views

designed around the needs of shop floor decision makers (personas). FactBoard’s decision support

engine provides persona-specific calculations and probabilistic recommendations to facilitate

inter-persona communications enabling effective factory-wide decision-making. The dashboard

system informs decision makers of the consequences of their decisions not only for their local

objective but also for global objectives at the facility level.

FactBoard fully supports pull-driven production/logistical methodologies, such as Kanban and

Kitting, and provides decision traceability. The resulting information can be post-processed by an

inventory reconciler engine for collaboration with ERP systems to enhance inventory and supply

chain accuracy. This document describes how to get started with FactBoard and explains in-depth

all the features and functionality of the current software version.

5

Getting Started
This document is a developing guide which will help the user develop and modify the plant layout

and different views. The first section helps the user to get started with the APIs and then general

information will be given on the structure of plant, dashboardview and buildlist; moreover, an

example will be discussed in the last section.

The successfully created actual shop floor views will be timely updated at website:

http://factboard.azurewebsites.net/

Web APIs
The Factboard application server backend application program interface (API) is based on

REST, JSON and in future will support OAuth2 authentication. API’s are used to define methods

of communication between various software components or resources.

All the API URL’s follow a common pattern as shown below.

{VERB} {base_url} /api/{controller}

Where

{VERB}: Can be “Get”,“Post”or”Delete”, see “Postman” below for more information

{base_url}: Is the url of website.

{controller}: Indicates the controller of api used. See “Controllers of WebAPI’s” below for a

complete list.

For example, if I want to access EVIR controller on factboard website the URL should be:

http://factboard.azurewebsites.net//api/EVIR

Controllers of WebAPI’s

Table 1 listed the current resources supported by Factboard.

Table 1 List of resources supported by Factboard

Name Description

Plant Used for maintaining the plant related information like the

Assembly Lines, Stations and other layout information

DashboardView Used for creating & editing Dashboard Views

BuildList Used for uploading & Viewing the Build List i.e, the sequenced list

of Units to be assembled on each line.

EVIR Transactions related to Unit SignOn and SignOFF

Issue Transactions for filing Quality & Logistics Issues

Station Viewing and Managing station list / information

http://factboard.azurewebsites.net/

6

Plant, DashboardView and BuildList will be discussed later in this document, as they are all

resources that can be manipulated. EVIR and Issues are generated via transactions (sign on/sign

off logs, Q-notes, M@POU, etc) entered by workers.

Postman
Postman is a Google Chrome app used for interacting with HTTP API’s for testing purposes. In

this case, we use Postman to send information (examples: plant layout, quality issues, sign

on/signoff transactions, etc.) to Factboard to simulate real time transactions expected from the

client. These transactions are intended to test the current Factboard environment and identify

any current bugs or development issues. Any JSON Web API compatible plugins/tools can be

used for testing the web service API. In this document, Postman is used for all developing steps’

demonstration.

Postman can be downloaded at https://www.getpostman.com/postman.

Request builder
Under the Builder tab (Figure 1), the request builder lets you create any kind of HTTP request

quickly.

Figure 1 Request builder in Postman

The URL is the first thing that you would be setting for a request. The URL used will be

determined by the type of information sent. See “Web API’s” for a full list of currently

supported URL’s. The URL input field stores previously-used URLs and will show an

autocomplete dropdown as the URL is entered.

Changing the request method is straightforward, using the control dropdown (Figure 2). Get and

Post are two methods that are used here.

https://www.getpostman.com/postman

7

Figure 2 Methods in Postman

Get
Change the method to Get and insert the URL. Click the blue “Send” button to retrieve the

information. This will return all the information/transaction logs that have been successfully

received by the specified URL.

Post
Post will all a user to send information/transactions log to the desired API. Change the method

to Post and insert the URL. In the Body section, choose raw and set it on JSON

(application/json). Click the blue “Send” button to post the information. See Figure 3. For

factboard, post formats are provided for different operations in manual.

Delete
Delete request is used to delete information , usually you will need a unique identifier to run

delete command. On Factboard, Delete is only allowed on Dashboard view controller. For other

controllers you can modify data by using POST request on an existing Id.

8

Figure 3 Posting a request

Common HTTP Status Codes
Once the information/transaction logs have been “Posted”, the system displays one of the

following HTTP codes. This will allow the user to determine if the transaction was successfully

completed or if an error occurred. See in Table 2 below for common responses.

Table 2 Common HTTP status code

HTTP Status Code Examples
The following are some examples of HTTP Status code errors

9

Figure 4 401 error example

401 error occurs when a request is unauthorized. This is caused by entering a URL that’s not

authorized, the user needs to have username and password to be able to make requests to the

URL. In the current version of Factboard, an authorization is not needed.

10

Figure 5 400 error example

400 error comes from a bad request from the client (client’s fault). Corrections can be made

according the error message, in this example, this is caused by entering a cycle time less than 0.

Figure 6 A success operation with 200 OK

Success message: every successful operation will get http status code “200 OK”.

When you get a status “200 OK” as in Figure 6 A success operation with 200 OK, a new plant

layout is successfully updated, and the number of records updated and added are also shown.

In the remaining of the document, all examples are performed with successful get and post

operations with Postman.

11

Plant

Plant layout information
In a plant layout, all components corresponding to a shop floor layout are defined. The plant

layout must be defined before a dashboard is created because it is the basis on which a dashboard

view will be created. The main objects are assembly lines, including both main assembly line

and any sublines supporting the mainline. Within each line, objects (mainly stations and buffers)

are defined with necessary amount of information.

Get the current plant information

GET {base_url}/api/plant

Figure 7 Steps to get the current plant layout JSON code

Follow the steps in 7 to successfully preform a GET request. With this operation, we receive all

plant info with regards to all existing views.

Add or update the plant information

POST {base_url}/api/plant

With this operation, we can add or update plant layout information with uploaded JSON script.

Plant format for post request:

http://factboard.azurewebsites.net/api/plant
http://factboard.azurewebsites.net/api/plant

12

 The format defines how the POST request should be formatted for adding/updating one line.

The parameters are explained in table below. Note: At a minimum, the user must define all

required parameters (“Required” = yes) for a successful transaction. All other parameters may

be included but are not necessary.

Table 3 Line object

Parameter Required Notes

lines YES A collection of assembly lines. Each line is an

object containing its own properties

Parameters for line object are listed in Table 4.

Table 4 Parameters for line object

Parameter Required Notes

id YES A unique name for the assembly line.

disableAutoStationOrdering YES This will disable the automatic order

assignment for stations.

Default: false

13

clearExistingData YES This will delete all existing data for the

assembly line instead of merging it, which is

the default behavior.

cycleTime NO Specify the cycle time for the assembly line.

Exceeding cycle time to a certain extend will

reflects on the dashboard. The time is in

minutes.

stations YES Define a list of station objects

buffers NO Define a list of buffers

You do not need to do a separate post for stations and buffers, they are included in plant request.

They are mentioned here for explanation.

1. Station object – This is used to define individual stations within the line. Note: At a

minimum, the user must define all required parameters (“Required” = yes) for a successful

transaction. All other parameters may be included, but are not necessary. ‘

Station Layout for post request:

Table 5 Parameters for station object

Parameter Required Notes

id YES A unique name for the station

description NO A short descriptive name for the station.

cycleTime NO An override to the cycle time specified at the

line level. This is to enable specifying

localized cycle times for the station.

Exceeding cycle time to a certain extend will

reflects on the dashboard.

isExitStation NO Indicate if this station is the last station on the

line. Crossing this status will case the unit to

be completed and will update the Line Metrics

in the Andon board.

Default: false.

stationOrder NO A number higher than 0, which indicates the

order of the station. Use this if the

disableAutoStationOrdering is set to False

14

Note:

a) The station id should be unique, no matter in the same or different line object.

Violating this an error message "Message": "Error: Could not perform update. Validation

Errors found." will appear when trying to send a POST request (HTTP Status: 400 Bad

Request).

b) Each line object should have only one exit station, or {"isExit": true}.

c) stationOrder defined within station object will be used if the line object it belongs to has

{"disableAutoStationOrdering": true}.

2. Buffer object – Some sub-assembly lines will allow units to build a queue between the end of

the sub-assembly and the insertion into the main line. Buffer’s allow users to view the units

currently waiting in said queues.

Buffer Layout for post request:

Table 6 Parameters for buffer object

Parameter Required Notes

id YES A unique name for the buffer station

description NO A short descriptive name for the buffer station.

fromStation YES The station from which the units will come

into this buffer station. Usually this is the exit

station of the line.

toStation NO Indicate if the units travel from this buffer to

another downstream line. The unit count will

be decremented when a unit is pulled from the

buffer to the toStation.

minQty YES A number of 0 or higher, that indicates the

minimum quantity of units that needs to be at

the buffer at any given point. This value is

used for alerts in the dashboard.

maxQty YES A number greater than 1, which indicates the

maximum quantity of units that is allowed /

should be at a buffer. Exceeding this value,

would show alerts in the dashboard.

qty NO Sets the current quantity of units at a buffer.

Used only when setting up an initial state.

Otherwise should not be used.

15

Dashboard View

Dashboard View Information
A dashboard view makes use of the plant information previously uploaded to Factboard and

defines the actual layout of the stations, buffers, and linkages. After a dashboard view is created

or updated, it can be accessed at http://factboard.azurewebsites.net/dashboard. See user guide for

further information on accessing dashboard views.

Note: The dashboard view creation or update is based on all elements needed are already existed

in plant layout environment. If a plant layout is not defined than an error will occur.

Get all available dashboard views
These steps are similar to the “GET” and “POST” transactions previously described, the only

difference is the API resource called. For the next example use the following URL.

GET {base_url}/api/dashboardview/

Figure 8 Steps to get the current dashboard view JSON code

Similar to GET in the previous example, using this command and the dashboard URL

(factboard.azure.websites.net/api/dashboard) we receive all existing dashboard view info.

Get all dashboard view names in system
To get all view names existing in Dashboard you can send a get request to the Dashboard View

controller with /getviewnames option.

GET {base_url}/api/DashboardView/getviewnames

Get a specific view by ID
To get information about a specific view replace view_name by view id you want to use.

GET {base_url}/api/DashboardView/byViewId/{view_name}

http://factboard.azurewebsites.net/dashboard
http://factboard.azurewebsites.net/api/dashboardview/

16

Add or update a view

POST {base_url}/api/dashboardview/

Like POST in the previous example, using this command and the dashboard URL will allow the

user to update or create new dashboard views with the uploaded JSON script. In this section,

detailed plant layout parameter arguments are introduced.

Figure 9 Steps to add/update plant layout

1. Dashboard view
To create a dashboard view, it needs a unique id, and a layout object that specifies details of

the view. Note: At a minimum, the user must define all required parameters (“Required” =

yes) for a successful transaction. All other parameters may be included, but are not

necessary.

View Layout for post request:

http://factboard.azurewebsites.net/api/dashboardview/

17

Table 7 Dashboard elements

Parameter Required Notes

id YES A unique name for the dashboard. If an

existing name is specified it will update that

view.

Layout YES The Dashboard layout

18

2. Layout
Table 8 Parameters for layout

Parameter Required Notes

lanes YES The list of lanes, with names “L1”, “L2”…,

representing pieces of presenting areas on

dashboard from top to bottom.

lines YES A collection of line objects that specify the id

and lane on which this assembly line should be

drawn.

Parameters:

id: unique id, consistent with plant layout info

lane: lane to appear on dashboard

disableAutoStationLinking: default true

If set to false then the links section is

used to define the layout. If it is true

then station order is used for linking

stations.

isVerticalLayout: default false

stations YES A list of station IDs that needs to be shown in

this view. Just the IDs is enough since the

station information from the plant layout will

be inherited.

buffers NO An optional list of buffer ids to use from the

plant layout.

links NO An optional list of links to connect sub line

exit station to main line stations.

Parameters:

from: linkage from station

to: linkage to station

options NO See below.

Options:

 Show AndOnBoard: Toggle the view for AndOnBoard on right top corner.

AndOnBoard display lines with total and completed unit count.

 Show Legend Toggle the view for Legends at bottom of screen.

 AndOnBoard Lines Provide a comma separated list of assembly lines you want to

include in AndOnBoard.

 Use Small Nodes Recommended if your view contain many stations. Will use

smaller nodes than usual increasing visibility.

 Padding Top

 Padding Bottom

 Padding Left

 Padding Right

Optional padding controls.

19

Delete a view
To delete a view, you need to run DELETE request with an id on postman. Replace view_name

with name of view you want to delete.

DELETE {base_url}/api/dashboardview?viewid=view_name

EVIR

EVIR information.
The EVIR controller is used to assign units to stations. You can use it to signon and signoff units.

EVIR logs also populate the drop down list in Product structure dashboard, enabling you to see

all stations in which the unit exist .

Get all the EVIR Information
To get information for all EVIR logs in the system, you can simply do get request to EVIR

controller.

GET {base_url}/api/EVIR

Filter EVIR by the view Id
You can filter the results by doing a GET request with view id as shown below:

GET {base_url}/api/EVIR/byViewId/{view_id}

Filter EVIR Details for a station

You can supply a valid station id to filter EVIR information. You will also need to supply start

and end date in your GET request. Replace station_id with an existing station id. The s_date and

e_date tokens represent start date and end date respectively. The format for dates should be

mm/dd/yyy. The end date should be greater than start date.

GET

{base_url}/api/EVIR/details/{station_id}?startDateTime={s_date}&endDateTime

={e_date}

Filter EVIR Details by Buffer ID

Similar to station ID you can also use a buffer ID to filter EVIR information. You will also need

to supply start and end date for this request. You will also need to supply start and end date in

your GET request. Replace buffer_id with an existing buffer id. The s_date and e_date tokens

represent start date and end date respectively. The format for dates should be mm/dd/yyy. The

end date should be greater than start date.

GET

20

{base_url}/api/EVIR/getbufferunits/{buffer_id}?startDateTime={s_date}&endDat

eTime={e_date}

Get all the Units serial numbers in a view
A view id can be used to pare down the list of EVIR logs.

GET {base_url}/api/EVIR/getevirunitlist?viewId=Default%20

Filter EVIR Information by Unit Serial Number
This request will filter EVIR information with unit serial numbers. Youcan also add view id to

further narrow your search.

GET {base_url}/api/EVIR/unit/{unit_id}?viewId={view_id}

Add/ Modify EVIR
To add a EVIR record you need to do POST request to EVIR controller with appropriate data.

POST {base_url}/api/evir

EVIR layout for POST Request.

Table 8: Parameters for EVIR request

Parameter Required Description

Station ID Yes The station ID for which you

want to add the EVIR.

Unit Serial No Yes A unique unit id used to

locate unit.

Transaction type Yes

Build List

Build List Information:
Is used to upload orders and model information. The models are used to color code stations in

dashboard and orders are used at sequencer.

Get all build list information:
To get information about all existing orders you can send a get request to buildlist controller.

GET {base_url} /api/buildList

21

Get build list information for a specific unit:
To filter information, you can use a unit serial number. Send a GET request to buildlist controller

as mentioned below. Replace {unit_serial_numebr} with an existing unit serial number.

GET {base_url} /api/buildList/{unit_serial_number}

Post a new item on build list:
You can use a POST request on buildlist controller to add or update order and model information

for a existing unit.

POST {base_url}/api/buildList
Build List Post format:

Table 8: Build List elements

Field name Required Description

Unit serial Number Yes Unit serial number for which you want the order

and model to be attached to. It needs to be a

existing unit serial number for changes to be

visible.

Order Number Yes A unique id to locate the order.

Assembly Line Id Yes The assembly line at which the unit exist.

Model Id Yes A Model ID to be associated with the unit. You

can use this id later to color code stations.

Line Schedule Date No Optional schedule date. It is required if you want

to use AndOnBoard. This will update the Units

scheduled for today in AndonBoard.

Build List Order No

Issue
Issue controller is used to file Quality and Logistics issues for stations in fact board.

22

Get all dashboard issues
You can fetch a comprehensive list of all issues filled in the system by simply doing a GET

request on Issue controller:

GET {base_url}/ api/Issue

Filter issue list

Using station id
You can modify the GET request as displayed below to get all issues for the specific stations.

Replace {Station_ID} with a valid ID.

GET {base_url}/ api/Issue/details/{Station_ID}

Using Issue Type
You can further narrow down the list through Issue Type. The only supported issue types are

‘Logistics’ and ‘Quality’. The station Id is required for this query too. The query needs to be

formatted as follows:

GET {base_url}/ api/Issue/details/{Station_ID} ?issueType={Issue_type}

Replace Station Id with a valid station id and {Issue_type} by Logistics or Quality.

Using Dates
If you want to look at issues filled in a specific date range you can add a start and end date in the

query as follows:

GET {base_url}/ api/Issue/details/{Station_ID} ?startDateTime={start_date}

&endDateTime={end_date}

The format of dates need to be mm/dd/yyyy and end date should be greater than start date.

Add/ Update a dashboard issue
To add an issue to dashboard you will need to do a POST request. The fomat of post request

needs to be of format:
{

 "stationid": "string",

 "unitserialnumber": "string",

 "partnumber": "string",

 "issueid": "string",

 "issuetype": "string",

 "description1": "string",

 "description2": "string",

 "severity": "string",

 "isopen": true,

 "createdby": "string"

}

The UID needs to be unique and is used to find a issue in database. If the same ID is used it will

overwrite the old issue.

Station Id is required and

Table 9: Issue elements

23

Parameter Required Description

Stationid Yes Station where the issue need

to be filled.

Partnumber No Optional part number.

Issueid YES A unique issue id

Issue type Yes Need to be one of two:

“Logistics” and “Quality”

Description1 Yes Description of issue

Description2 No Can be provided to elaborate

the issue.

Severity Yes Can be one of following

options: “”

Isopen Yes Need to be true or false.

Denote if issue is open or

close. To close a previously

opened issue, make sure to

use same issue id.

Createdby Yes The name of person creating

issue.

Inventory Reconciler

Get all assembly lines
To get all the assembly lines in the system you will need to do a get request to the Inventory

Reconciler controller. The response will include a unique UID , the name of assembly line and

description, if provided by the user.

GET {base_url} /api/inventoryReconciler/assemblyLines

Get all storage areas
To get a list of all storage areas associated with an assembly line you can execute a get request

inventory reconciler controller. You need to specify a UID (Not id) in request. Replace

{assembly_line_uid} with the UID.

GET {base_url}/api/inventoryReconciler/storageAreas/{assembly_line_uid}

Sequencer
Though Most of the tasks in sequencer can be accomplished by user interface in Sequencer , you

can do some postman requests to Factboard API to get more filtered data.

Sequencer has following controllers:

Controller name Description

24

Sequence To get information regarding views and

product groups.

Sequencer To post new information or update old

records related to orders.

Sequence Import Can be used to modify more higher-level

information including assembly lines, time

slots and storage areas, etc.

Sequence

Get all the sequencer product groups
No parameters needed.

You can quickly get a list of all product groups in sequencer by doing a get request to sequence

controller. The response will include UID, Name and description for groups.

GET {base_url} /sequence/productGroups

Get all the views within a specific sequencer product group
Parameters needed: Product group uid.

Product group uid should be a valid id and exist in database. Please not that it is uid and is an

integer not the text id.

GET {base_url} /api/sequence/viewInfos/{view_uid}

Get sequence view information for a specific view filtered by dates
Parameters needed: Sequence view id, start date and end date.

Sequence view id should be valid id. Start date and end date should be in format yyyy/mm/dd

and end date should be greater than start date. The request can be formatted as follows:

GET {base_url} /api /sequence/view/{sequence_view_id}?

startDate={start_date}&endDate={end_date}

Sequencer

Assign orders
To post assign orders to a view in sequencer you can do a post to Sequencer controller with

assign orders. The request also returns what items were affected by the change.

POST {base_url}/api/Sequencer/assignOrders

The post request should be like following:

{

 "viewUID": 0,

 "startDate": "2018-04-25T20:06:14.158Z",

 "endDate": "2018-04-25T20:06:14.158Z",

25

 "orderUIDList": [

 0

],

 "slotUIDList": [

 0

]

}

Un-assign order:
To un-assign orders within a specific view do a post request to Sequencer controller. The request

will return all items that were affected by the change.

POST {base_url}/ api/Sequencer/unassignOrders

The post request should be formatted as follows:

{

 "viewUID": 0,

 "startDate": "2018-04-25T20:36:38.542Z",

 "endDate": "2018-04-25T20:36:38.542Z",

 "orderUIDList": [

 0

]

}

Swap Slots:
You can also swap orders using POST request. The request should be on Sequener controller.

POST {base_url}/ api/Sequencer/unassignOrders

You also need to know the slotUIDs for this post. The post should be formatted as follows:

{

 "viewUID": 0,

 "startDate": "2018-04-25T23:20:42.914Z",

 "endDate": "2018-04-25T23:20:42.914Z",

 "slotUID_1": 0,

 "slotUID_2": 0

}

26

Tutorial with Example

Example Plant layout:

First, we will start by adding our assembly lines in our plant. These lines will define stations and

buffers with required attributes. We will add three lines named: Main Line, PowerMod and

SUB1. For his we will do three POST requests to plant controller adding one line at a time. Note:

Station Ids has to be unique, if you are using this example to follow modify the ids.

Post request for Main Line

{

 "lines": [

 {

 "id": "Main Line",

 "clearExistingData":"true",

 "disableAutoStationOrdering":"true",

 "cycletime":"100",

 "stations":[

 {

 "id": "DM_S1",

 "description": "",

 "stationOrder": 1,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S2",

 "description": "Station 2",

 "stationOrder": 2,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S3",

 "description": "Station 3",

 "stationOrder": 3,

 "isExitStation": false,

 "cycleTime": 30,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S4",

 "description": "Station 4",

 "stationOrder": 4,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

27

 },

 {

 "id": "DM_S5",

 "description": "Station 5",

 "stationOrder": 5,

 "isExitStation": true,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S6",

 "description": "Station6",

 "stationOrder": 6,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S7",

 "description": "Station7",

 "stationOrder": 7,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S8",

 "description": "Station8",

 "stationOrder": 8,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S9",

 "description": "Station9",

 "stationOrder": 9,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S10",

 "description": "Station10",

 "stationOrder": 10,

 "isExitStation": false,

28

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S11",

 "description": "Station11",

 "stationOrder": 11,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S12",

 "description": "Station12",

 "stationOrder": 12,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S13",

 "description": "Station13",

 "stationOrder": 13,

 "isExitStation": false,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 },

 {

 "id": "DM_S14",

 "description": "Station14",

 "stationOrder": 14,

 "isExitStation": true,

 "cycleTime": 60,

 "modifiedOn": "2017-08-04T23:50:14Z"

 }

],

 "buffers":[

 {

 "id": "DM_B2",

 "description": "BUFFER2",

 "fromStation": "ML140",

 "toStation": "",

 "maxQty": 10,

 "minQty": 0,

 "qty": 0,

 "modifiedOn": "2017-08-04T23:50:14Z"

29

 }

]

 }

]

}

POST for PowerMod

{

 "lines": [

 {

 "id":" PowerMod",

 "clearExistingData":"true",

 "disableAutoStationOrdering":"true",

 "cycletime":"80",

 "stations": [

 {

 "id": "D50Z010EN",

 "description": "Engine",

 "stationOrder": 1,

 "isExitStation": false,

 "cycleTime": 60

 },

 {

 "id": "D50Z010PM",

 "description": "Power Mod1",

 "stationOrder": 2,

 "isExitStation": false,

 "cycleTime": 60

 },

 {

 "id": "D50Z020PM",

 "description": "Power Mod2",

 "stationOrder": 3,

 "isExitStation": false,

 "cycleTime": 20

 },

 {

 "id": "D50Z030PM",

 "description": "Power Mod3",

 "stationOrder": 4,

 "isExitStation": true,

 "cycleTime": 60

 },

 {

 "id": "D50Z020EN",

 "description": "Heat Exchange",

 "stationOrder": 5,

30

 "isExitStation": false,

 "cycleTime": 60

 }

],

 "buffers": [

 {

 "id": "DM_B1",

 "description": "BUFFER1",

 "fromStation": "50Z030PM",

 "toStation": "ML090",

 "maxQty": 2,

 "minQty": 0,

 "qty": 0

 }

]

 }]

}

Post for SUB1

{

 "lines": [

 {

 "id": "SUB1",

 "clearExistingData":"true",

 "disableAutoStationOrdering":"true",

 "cycletime":"90",

 "stations": [

 {

 "id": "SD1",

 "description": "Station 1",

 "stationOrder": 1,

 "isExitStation": false,

 "cycleTime": 80

 },

 {

 "id": "SD2",

 "description": "Station 2",

 "stationOrder": 2,

 "isExitStation": false,

 "cycleTime": 80

 },

 {

 "id": "SD3",

 "description": "Station 3",

 "stationOrder": 3,

 "isExitStation": true,

31

 "cycleTime": 80

 }

],

 "buffers": [

 {

 "id": "DM_B3",

 "description": "BUFFER3",

 "fromStation": "S3",

 "toStation": "ML070",

 "maxQty": 10,

 "minQty": 0,

 "qty": 0

 }

]

 }]

}

Example View:
Now when we have defined our lines we need to define the view. In view you define which

stations you want to see and how they should be linked. Here is a post request data for example

view:

POST request for View:

{

 "id": "Example",

 "layout": {

 "lanes": [

 "LD1",

 "LD2",

 "LD3"

],

 "lines": [

 {

 "id": "Main Line",

 "lane": "LD2",

 "isVerticalLayout": false,

 "disableAutoStationLinking": false

 },

 {

 "id": "PowerMod",

 "lane": "LD1",

 "isVerticalLayout": false,

 "disableAutoStationLinking": false

 },

 {

 "id": "SUB1",

 "lane": "LD3",

 "isVerticalLayout": false,

32

 "disableAutoStationLinking": false

 }

],

 "stations": [

 "DM_S1",

 "DM_S2",

 "DM_S11",

 "DM_S9",

 "DM_S6",

 "DM_S7",

 "DM_S3",

 "D50Z010EN",

 "D50Z010PM",

 "D50Z020PM",

 "SD1",

 "SD2",

 "SD3"

],

 "buffers": [

 "DM_B1",

 "DM_B3"

],

 "links": [

 {

 "from": "D50Z020PM",

 "to": "DM_S2"

 },

 {

 "from": "SD3",

 "to": "DM_S2"

 }

],

 "options": {

 "showAndonBoard": true,

 "showLegend": true,

 "andonBoardLines": [

 "Main line"

]

 }

 }

}

At this point, you can go to your website and look at the view. The provided example will look

like layout provided. You need to select your dashboard view with dashboard type as current and

color code type: Logistic issues.

33

Example EVIR log:
The stations in the example are color coded according to station status. Station status depends on

the units assigned to station and how much time they take to execute. If the execution time is

more than selected upper limits, then stations are color coded as red. To attach a unit to station

ou need to do post request to EVIR controller.

For example, if we want to add a unit with unit serial number as D51418 to station D50Z010EN

the Post should look like below. After you successfully add the unit you can go back to website,

refresh it and double click on the station to verify the unit is displayed in unit transactions.

 {

 "stationid": "D50Z010EN",

 "unitserialno": "D51418",

 "transactiontype": "signon"

}

Example Build List:
Now when we have successfully added a unit, we can add order and model. To do this post data

will look like:

[

 {

34

 "unitSerialNumber": "D51418",

 "orderNumber": "D1555",

 "assemblyLineId": "Main Line",

 "modelId": "Demo_model"

 }

]

To see your newly added model you can go back to website and select color code type as model.

In the example, you will be able to see that Demo_Model has been associated station

D50Z010EN because it contains unit D51418.

Example Sequencer File:

For Sequencer and Inventory Reconciler the data can be imported by uploading an excel file.

This file is called a sequencer file and have number of sheets that we will discuss in detail. A

typical sequencer tab looks as shown below:

35

 Note that sections may vary depending on your view selected for the grid and orders. You can

select to show or hide different panes in your grid options. The pane will only show up if you

have a relevant order. For example, if you don’t have any diverted order you will not see Order

Category: Diverted even if you selected it in the grid option.

